
DWH
Automation
Challenge
Automating Willibald with dbt and
datavault4dbt

Integ

Who are we

Andreas Haas has been working as a consultant in the business
intelligence sector for over 20 years. During this time, he has successfully
implemented data warehouse projects in various industries, mainly in the
roles of data warehouse architect, data engineer and in project
management. As a certified Data Vault 2.0 Practitioner, large metadata-
driven Data Vault implementations are the main focus of his work.

andreas@haas-erlangen.com
linkedin.com/in/haasandreas/

Jan Binge has gained over 25 years of experience in the field of IT, out of
which he has spent more than a decade as a freelance consultant
specializing in "data warehouse design". Following his certification as a
Datavault Practitioner in 2014, he has directed his attention towards
modeling and developing data warehouse systems while also emphasizing
the automation of creation processes.

jan@binge.de
linkedin.com/in/jan-binge

Integ

What is dbt

- dbt (data build tool) is a compiler

- focus is on data transformation - mainly using SQL

- each table or view (called model) is defined in a separate text-file

- dependency management (orchestration)

- automation and standardization with jinja2-macros

- no DML necessary, materialisations can be configured

- build in testing / documentation – capabilities

- open source (on-premise called dbt core)

- also available as SaaS (called dbt cloud) including

- scheduling

- API-calls

- Integrated IDE

- dbt does not load data from other sources

- dbt has no scheduling feature

https://www.getdbt.com/product/what-is-dbt/

Integ

Why we use dbt

• the integration in GIT provides a key-feature to a standardized
development and deployment process.

• vibrant large community using, discussing ,extending the
product (packages)

• easy to get up to speed

• imposed standardisation by using macros

• many target databases supported

• one platform for all data teams:

• Data Engineer – Teams

• Data Analytics – Teams

• Data Science – Teams

• scalable projects (multiple parallel teams – data mesh)

Structure of dbt - project

We structured the
models within the
dbt-project in
subfolders according
to the layers.
Within the layers, we
defined a subfolder
for each business
object including all
models related to it
(including tests)

What is datavault4dbt

Datavault4dbt is an Open-Source package from Scalefree which includes a
set of macros to create a fully compliant data vault 2.0 - data warehouse

https://github.com/ScalefreeCOM/datavault4dbt/wiki

„dbt-model“ with all necessary parameters calling the hub macroexcerpt of the hub macro

Automation Challenge dbt-Setup

Operative Systems

Roadshow

Webshop

AWS S3
Datalake

Data Warehouse on Snowflake

Ex
te

rn
al

 ta
bl

es

Lo
ad

 /
 S

ta
ge

Ra
w

 V
au

lt

Bu
sin

es
s

Va
ul

t

In
fo

rm
at

io
n

M
ar

t

Error Vault/Mart

Presentation
Layer

Sn
ap

sh
ot

-la
ye

r

Evaluation criteria
(1) Hierarchical Link

(2) Multi-active Satellite

(3) Validity in Relationships

(4) m:n Tables

(5) Early Integration

(6) (Historized) reference table

(7) Duplicate Data

(8) Rows without business keys

(9) Changes of Attributes

(10) Deletion of Business Keys

(11) Invalid foreign Keys

(12) Deletion of Orders

(13) Change of Dimensions

(14) Key Figures

(15) Business Rules

(16) Data Lineage

(17) Error Handling

(18) Orchestration

(19) Deployment

(20) Scheduling

(21) Supported Databases

(22) Installation Requirements

Yedi-tests
High Water Marking

Evaluation criterium 1: Hierarchical Link

There is a table Kategorie in the
webshop, which includes a
parent-child relationship
between KatID and OberKatID
with several levels

Implemented as a hierarchical link
productcategory_hierarchy_l (standard
macro in datavault4dbt)
and a status-satellite, to identify
potential changes

Evaluation criterium 2: multi-active satellite

In this case, several valid rows are delivered for
each customer, the multiactive-key is von.
There is a standard-macro for multi-active Satellites in
datavault4dbt.

Each delivered set gets the same Hash_Diff. That way a change
in one entry leads to including the complete set new.

Evaluation criterium 3: Validity in Relationships

The relationship between
ORDER (Bestellung) and
POSITION (Position) cannot
change. The key situation makes
every change a deletion and a
new creation.

All other relationships can
change. The test cases are all
implemented on the foreign key
in CUSTOMER (Kunde) to
ASSOCIATION PARTNER
(Vereinspartner). The following situations occur here:

• the foreign key is optional and therefore also NULL
• The foreign key changes between ASSOCIATION PARTNERs
• The foreign key changes from "valid" to "invalid" - and some

cases then even back to "valid" again

Evaluation criterium 3: Validity in Relationships

Evaluation criterium 3 (cont): Validity in Relationships
Identifying Relationship and Driving Keys

To track and identify changes of relationships, we
defined status satellites (postfixed with _sts), which can
be used for either links or hubs.
They contain a cdc-attribute
(either "I"– insert or "D" – delete)
The load logic depends on the data-delivery
(full-load, partial-load, cdc-delivery).
The idea here is, that further downstream no knowledge
regarding the load-logic is necessary.

In case there is a driving-key for a link,
an effectivity satellite view is set on top of the status-
satellite and the link (postfixed with _es),
which enddates all entries no longer valid.

Evaluation criterium 4: m:n Tables

We decided to define a non-historized-link
(postfixed with _nhl) for that case.

Solving this topic using a keyed instance or a
dependent child link would be possible as
well.

Evaluation criterium 5: Early Integration

There are orders from the webshop and
roadshow. The orders and positions of both
source-systems are loaded into the Raw
Vault Hubs order_h and position_h.
Describing data is saved in separate satellites
for each source-system.

Each source-table loading into position_h
needs to be defined as source model using
the standard datavault4dbt hub-macro.
In the roadshow dataset, there is no
positionID available, that’s why we defined it
concatinating bestellungid and produktid on
stage-level.

„dbt-model“ with all necessary parameters calling the macro hub

Evaluation criterium 5: Early Integration

dbt-model with all necessary parameters calling the hub macro

Defining a position business key for roadshow on stage-level

Evaluation criterium 6: (Historized) reference table

The data for delivery-adherence is being
delivered twice (first day and third day of
delivery) with changes to the data in-
between.

These changes should be reflected in the
calculation of the delivery adherence.

In datavault4dbt two macros are provided to create a
reference-table and a historized reference-table: ref_hub and
ref_sat_v0.

They create a DV-structure that is quite similar to the standard
hub and satellite with the difference of using natural keys
instead of hash-keys

Evaluation criterium 9: Changes of Attributes
(A-B-A changes in customer data)

A very simple test case, the data in the customer (KundeID 107)
is changed to a value in delivery 2 and get the values from
delivery 1 again in delivery 3.
This type of change is handled correctly by the datavault4dbt-
macro sat_v0.

Evaluation criterium 10: Deletions of Business Keys
(Deletions in customer data)

In the willibald-data business-keys are being deleted and reappearing at a later date. (e.g.,
CustomerID '70' appearing in the webshop-data on 14. and 28. but not on 21.)

This issue has been solved by using status-tracking-satellites (_sts) as explained in criterium
#3.

Evaluation criterium 11: Invalid foreign keys
(Lieferadresse has unknown Kunde)
The first delivery contains delivery addresses for which there is no record with the same customer ID (KundeID)
in CUSTOMER (Kunde - KundeIDs 999, 998 and 997).

As part of the standard Raw Vault implementation, one of the
sources of CUSTOMER_H is also the customer-column in delivery-
address. That way the three relevant rows are correctly loaded
into all the entities shown on the right.

Evaluation criterium 11: Invalid foreign keys
(Lieferadresse has unknown Kunde)

Evaluation criterium 12: Deletion of Orders

The orders are relevant for counting and are deleted during the dates of deliveries.
Between period 1 and 2 the orderIDs (BestellungID) 99, 220 and 465.
Between periods 2 and 3 the orderIDs (BestellungID) 1470 and 1288.

Within the status-satellite ORDER_WS_STS, a new record with cdc=D
is added for orderID=99, when loading period 2.
This leads to this order not being part of the „snapshot-satellite“
order_sns, for each reporting_date after period 2.

Evaluation criterium 13: Change of Dimensions

The productcategory-hub is sourced
from the columns KatID and
ObereKatID from the same source-
table. The link defines the hierarchy
(hierarchical-link).
This hierarchy completely changes
from period 1 to period 2.

Data Warehouse – Snapshot-Layer

It consists of Snapshot-PIT for
every hub and link and
Snapshot-views on top joining
the pit with all its attached
satellites including status and
effectivity satellites

This is the base for Business
Vault

Evaluation criterium 14: Key Figures

We created a PowerBI Report to give access to the data:

Evaluation criterium 15: Business rules
implementation

• order_customer_bb:
Adds records for roadshow orders, where customers are missing in the order-table, but
can be identified using the creditcard-information to the already existing records (in the
Raw Vault stored in order_customer_l)

• sales_bb:
Contains all the logic necessary for the fact-table

• a *_bs (business satellite) view is specified for each dimension, if any business-logic
needs to be applied

Evaluation criterium 16: Data Lineage

dbt provides data lineage on table-level based on the references within the code

Columnar lineage is not available.

Evaluation criterium 17: Error Handling
Implemented in macro for load-view

Step 1: Get attributes with names as
VARCHAR

Step 2: try_to-Cast to defined datatype

Step 3: If result of cast is NULL and RAW-
value was NOT NULL...an error has
occurred: the type-check failed

Step 4: All type-checks, duplicate-checks
and empty-key-checks are connected to one
column: is_check_ok

Evaluation criterium 17: Error Handling

Evaluation criterium 17 (cont): Error Handling

Based on the column is_check_ok, erroneous data can easily be excluded
from the further standard process and loaded into the error-vault.

We defined one Error-Satellite for each source-system
• one column with all the RAW_DATA as json
• one column with a summary of all the failed checks

Evaluation criterium 18: Orchestration

• dbt uses lineage-information to calculate the sequence to build all dependent
objects. There is no need to create specific loading-chains.

• To refresh the whole model only the command dbt build has to be issued
• If only one source has new data it could be useful to refresh only this source, and

all dependend models by issuing the command
dbt build -s <modelname>+

• The dbt build - command will only add new data. If all data (existing in the landing
zone) should be loaded, the parameter --full-refresh can be added

• To make the loading from the landing-zone more efficient, we added a high-
watermark-table to the model. In there the latest load-date of every source is
saved and only newer data is read.

Evaluation criterium 19: Deployment

All of the programming-artefacts in
dbt are plain text files dbt supports
github, gitlab, bitbucket, Azure
DevOps etc.

deployment follows the git workflow

https://www.getdbt.com/analytics-engineering/transformation/git-workflow/

Evaluation criterium 20: Scheduling

In our project we use Jenkins to
run dbt in a docker container.

As the Willibald-data is provided
by a github-repo. We also use
Jenkins to get the data and store
it in the S3-Bucket.

dbt doesn't need a lot
of resources because most of the
work is done by the target-

database-server.

Evaluation criterium 21:
Supported Databases
(as of April 2023)

*https://docs.getdbt.com/docs/supporte
d-data-platforms
(there are even more created from the
community)
**https://github.com/ScalefreeCOM/dat
avault4dbt
(The work-in-progress (wip) should be
available sometimes this year)

datavault4dbt**dbt*target

xAlloyDB

(wip)xAzure Synapse

(wip)(community)SQL-Server

xxBigQuery

(wip)xDatabricks

xDremio

(wip)xPostgres

x(community)Exasol

(wip)xRedshift

xxSnowflake

xSpark

xStarburst & Trino

(wip)(community)Greenplum

Evaluation criterium 22:
Installation
Requirements

Prerequisites for installing dbt are python (3.7+) and
a git-client.

We also installed Visual Code on our windows
machines to be able to edit the text-files more
comfortably.

All other installations are then done using pip or dbt
(except for jenkins and docker).

Evaluation criterium
supplemental 1:
Yedi-Tests

Due to some weird behaviour from the snowflake-optimizer not all Yedi-Tests may run. If you experience long running SQLs (> 10
secs) it could be the case, that the excution plan has not been built optimal. Please reach out to snowflake support and refer to case-
no: 00511229 – snowflake will then change something in the configuration of the account.

Yedi-tests can be created using the
yedi_test-macro located under
macros/tables.

Evaluation criterium
supplemental 2:
High water marking

We created a high-water marking – mechanism to make the access to
the data lake more efficient
- There is hwm-switch and a "post-hook" in every loading-model.
- If the hwm-switch is set to true it will (in incremental-load) only read

from the last "High-Water-Mark" (highest ldts) which is been set by
the post-hook the last time data has been inserted

- In full-load the "High-Water-Mark" will be ignored at reading – but it
will be set after loading.

- The hwm-table is located in the DWH_00_META-schema
- There is also a hwm-mechanism integrated in datavault4dbt – which

we didn't use.

Intermediate result

• Fully data vault 2.0 compliant data warehouse solving all the issues
defined in the challenge

• dbt follows a technical approach, allowing a professional developing
process – but there is a risk of creating a gap between the business
and the data vault implementation.

• A data warehouse setup should promote close cooperation and
transparency between the business departments and the data
engineers.

• To address this issue, we added a graphical data governance tool to
the toolstack and integrated it into our technical solution.

- #1 Data Governance Tool in BARC’s The
Data Management Survey 23

- based on Data Excellence Framework©
- easily configurable (additional metadata)
- dataspot. is built by a very passionate,

collaborative team, it is fun to work with

Our technical setup – metadata flow
Data Governance

Adapter
dataspot2

TurboVault4dbt
Operative
Systems

Webshop

Roadshow

Interface to
generate dbt-

models
for load/stage/rv

(extended by us)

Step 1:
Automatic load
and refresh of

metadata
into the technical
data model (TDM)

Step 2:
Define business object

model and its transformation
from the technical data

model

Includes Dbt
macros to set up

Data Vault 2.0

Manually define
models for BV and

Info-Mart

Step 3:
Extraction of all metadata

necessary for generating the
Raw Vault, loading the

interface

Step 4:
Generating all dbt-models

necessary based on macros
Step 5:

Running the macros with
all dbt functionality

Step 6:
Automatic transfer of the

RawVault
implementation in the DB

into dataspot

Business Object Model (FDM_Willibald)

Transformation from technical data model into Business Object Model

More complex transformation

Business Object Model (FDM_Willibald)

Relationships within the business object model
are set up as links in the raw vault

All necessary information is defined within the
model

Raw Vault in dataspot.
(TDM_Willibald_RawVault)

Each Business-Object and its related models is defined in its own collection, only showing the hubs and links (the
spine) in the overview diagram.

Raw Vault in dataspot.
(TDM_Willibald_RawVault)

When extending Position, all entities within the collection (and entities connected to it) are shown.
Based on the additional information defined in the relationship "position contains a product", the marked entities
and all its necessary load and stage entities are automatically generated.

Models automatically generated

Data Warehouse on Snowflake

Ex
te

rn
al

 ta
bl

es

Lo
ad

 /
 S

ta
ge

Ra
w

 V
au

lt

Bu
sin

es
s

Va
ul

t

In
fo

rm
at

io
n

M
ar

t

Error Vault/Mart

Sn
ap

sh
ot

-la
ye

r
95 % of all models and tests in
the marked layers are
automatically generated based
on the metadata in dataspot.

All generated models are marked
with a comment like:

Summary

• dbt and datavault4dbt can be used to implement a fully data vault 2.0
compliant data warehouse solving all the issues defined in the challenge

• By integrating the solution with a business-centric data governance tool like
dataspot we were able to reach a new level of maturity concerning the
automation process, forcing all stakeholders to closely work together, achieving
a common understanding by design :-).

• This setup is heading towards our idea of an ideal data warehouse solution

• If you want to contact us:
• andreas@haas-erlangen.com
• jan@binge.de

Contribution

