

Fact-Oriented Modeling in ERM and FCO-IM

Jan Pieter Zwart
Group Model-Based Information Systems
HAN University of Applied Sciences

University

33.000 students, 2.500 staff

62 bachelor, 19 master programs in 4 faculties, 26 institutes

39 research groups

Faculty, Institute

Faculty of Engineering. Institute: ICA

Academy of Communication and Information Technology

7 bachelor programs

3 research groups

1600 students, 120 teaching staff

2016: 650 first-year students

Dean: Ir. Ing. Peter Koburg

Research group

Model-Based Information Systems (M-BIS) Headed by: Prof. Dr. Stijn Hoppenbrouwers

Expertise:

- Development of model-based methods and techniques
- Collaborative modeling approaches
- Metadata management
- Business intelligence
- Courses, consultancy

ICA: 7 programs for Bachelor of ICT, 4 years each.

In year 2:

Semester: Information Systems Engineering

Courses:

- Requirements
- Database Implementation
- Data Modeling and Relational Database Design

Fact-Based ERM: developed 2015-2016 for the last course.

A few colleagues at the HAN:

Chris Scholten MSc, Senior Lecturer

Dineke Romeijn MSc, Lecturer

Marco Engelbart, MSc, Senior Lecturer

ICA | INFORMATICA COMMUNICATIE ACADEMIE

Hogeschool

ICA | INFORMATICA COMMUNICATIE ACADEMIE

ICA | INFORMATICA COMMUNICATIE ACADEMIE

Hogeschool

Killing three birds with one stone

Catching three birds with one net

Fact-Oriented Modeling (FOM)

- Fact-based vs Attribute-based modeling
- Problems in classic ER models
 - Only type level
 - No semantics
 - No method
- Verbalizing example facts helps modelers
- Method to draw up an ER model
- Better FOM technique: FCO-IM and CaseTalk
- Experiences and conclusion

Fact-Oriented Modeling (FOM)

- Fact-based vs Attribute-based modeling
- Problems in classic ER models
 - Only type level
 - No semantics
 - No method
- Verbalizing example facts helps modelers
- Method to draw up an ER model
- Better FOM technique: FCO-IM and CaseTalk
- Experiences and conclusion

Fact-Based vs Attribute Modeling

Central point:

The fact—oriented/based perspective offers a valuable extra viewpoint to supplement the traditional entity / attribute viewpoint.

Fact-Based vs Attribute Modeling

Reservation Request Part: Attribute/Entity perspective:

- Table: models an entity type: a kind of thing in the UoD
- Columns: model attributes: properties of the entity type

Attribute	Attribute	Attribute	Attribute
Dom:RRno	Dom:Seqno	Dom:Perfno	Dom:Number
PK, NN	PK, NN	NN	NN
↓	↓	↓	↓

Reservation Request	Res. Req. Part	Performance	# Seats
3456	1	256	2
3456	2	277	6
5555	1	277	3
•••	•••		•••

Focus: the atoms of information, not the molecules

Fact-Based vs Attribute Modeling

Reservation Request Part: Elementary Fact perspective:

• Table contains facts: groups of atttributes that belong together Part 1 of res. req. 3456 concerns performance 256.

Reservation Request	Res. Req. Part	Performance	# Seats
3456	1	256	2
3456	2	277	6
5555	1	277	3

Focus: the molecules of information, not the atoms

Fact-Based vs Attribute Modeling A few pros and cons of these perspectives:

	Entity, Attribute	Elementary Facts
Pros	 Easy for trivial properties Techniques widespread (ERM, UML,) Many big software tools 	 Natural units of info Good for complex data str. Semantics clear Good methods Metamodel simple
Cons	 No natural units of info Impracticable for complex data structures Semantics not included No good method Metamodel clumsy 	 More elaborate Techniques in niche (FCO-IM, ORM, CogNIAM) Few supporting tools (CaseTalk, NORMA,)

Fact-Oriented Modeling (FOM)

- Fact-based vs Attribute-based modeling
- Problems in classic ER models
 - Only type level
 - No semantics
 - No method
- Verbalizing example facts helps modelers
- Method to draw up an ER model
- Better FOM technique: FCO-IM and CaseTalk
- Experiences and conclusion

Problems in classic ER models

Fact-oriented modeling aims to expand classic ERM with:

- Fact-based perspective
- Semantics
- Instance level
- Systematic technique

Here's why:

Problems in classic ER models

Is this model correct?

At least some semantics is modeled: the meaning of the RT is clear

But Salary (per year? per month)?

What is Area? Size? Part of building?

Abstract model: difficult to check.

Types and instances

Type level

EMPLOYEE <pi><pi><pi>EMPNO Eno <u><M></u> <M> Ename NAME MONEY <M> Salary has a desk in Workspace contains a desk of **ROOM** <pi><pi><pi>ROOMNO Rno <M> AREA Area

Instance level

Type level

A classic ERM diagram shows only the type level

This suffices for simple everyday ETs and Atts (but many Atts are not simple at all)

However, for unfamiliar contexts and/or complex data structures this is not enough to understand the model

Adding the **semantics** (meaning) and **examples of instances** to the diagram can greatly help to validate the model (is it correct?)

Semantics and instance level

Type level

of € <Salary > per month. E1 E2 E45 John Lisa John 3000 5000 2400 Fact-Based ERM diagram with predicates and populations

Predicate: represents exactly one type of fact

Type level

Semantics and instance level

Fact-Based ERM diagram with predicates and populations

Predicate: represents exactly one type of fact

Type level

Semantics and instance level

Fact-Based ERM diagram with predicates and populations

Predicate: represents exactly one type of fact

Fact type: either <pi>+Att combination or non-dependent RT

Population: concrete illustration Substitute values into blanks

In practice: do this only for unclear Atts and RTs

Hogeschool

Types and instances, weak ET

Here is a simple example of a weak ET (only one <pi>+Att fact type is shown)

In complex data structures (like branching chains of weak ETs), a predicate and example population can clarify much

Note: a dependent RT cannot have a predicate or population

Subproject <Sequence number> of project <Project_number> must be completed by <Deadline>. P315 P315 P244 20160205 20160301 20160201

Problems in classic ER models

Three main problems with classic ERM:

- Only abstract type level is modeled Impossible to validate abstract model
- Semantics (of complete facts) not modeled
 Data Dictionary: absent, or only ET and Att.
 Semantics highly valued in practice
- No good modeling method
 Most textbooks show WHAT to model
 No textbook shows HOW to model

Here: attempt to solve all problems using verbalizations of concrete examples of facts

Fact-Oriented Modeling (FOM)

- Fact-based vs Attribute-based modeling
- Problems in classic ER models
 - Only type level
 - No semantics
 - No method
- Verbalizing example facts helps modelers
- Method to draw up an ER model
- Better FOM technique: FCO-IM and CaseTalk
- Experiences and conclusion

Examples of verbalizations

Employee InsEd manages project P315.

The description of subproject 2 of project P315 is: Improve firewall.

Subproject 2 of project P315 is led by employee WndIa.

Why use verbalizations of facts?

Verbalizations of elementary facts:

- Are on the concrete instance level
 Domain expert and modeler: common ground
 Validation by domain expert is easy
- Capture the semantics of the data
 Main issue in practice (>60% of design time)
- Are independent of modeling technique

 Do not change in model transformations:

 ORM, ERM, UML, Rel, ...: same verbalizations
- Offer a valuable alternative viewpoint Natural units of information

How do verbalizations help a modeler?

Verbalizing concrete examples of facts:

- Makes the modeler understand the data
- Is done in constant dialogue between modeler and domein expert no 'ivory tower' modeling
- Enables an arcane abstract ER model to be built from familiar concrete facts
- Leads to a good and simple method to draw up an ERM diagram
- Enables easy validation of the model
- Enables adding semantics and examples to the diagram itself where convenient

Fact-Oriented Modeling (FOM)

- Fact-based vs Attribute-based modeling
- Problems in classic ER models
 - Only type level
 - No semantics
 - No method
- Verbalizing example facts helps modelers
- Method to draw up an ER model
- Better FOM technique: FCO-IM and CaseTalk
- Experiences and conclusion

Method

Plenty of ERM textbooks tell you WHAT to model

No ERM textbook tells you HOW to make a good model

Fact Oriented/Based Methods (FCO-IM, ORM, CogNIAM) have always provided a good method

Procedure to draw up an ERD

Steps 1 and 2 are not covered in this presentation.

- 1. Collect concrete examples of facts
 - Use BPM as starting point
 - Make up examples if they don't exist (yet)
- 2. Verbalize these examples
 - With domain expert. Result: fact expressions.
 - Make the meaning as clear as possible
- 3. Sort expressions into Fact Types (FTs)
 - Same kind of expression: same FT
 - Order FTs with most components last
- Analyze each FT (2 segments) and add the results to the ERD

Starting point

A process model shows data stores and flows: good sources of concrete examples of facts

Sorting fact expressions

Expressions of the same kind belong to a <u>Fact Type</u>.

Expressions of the same type have <u>components</u>: places where the text can vary.

FT4 has 2 components

FT6 has 3 components

Sorting fact expressions

Procedure for sorting:

- Place expressions of the same kind in the same Fact Type (FT)
 - 2 or 3 expressions per FT is enough
- Per FT: count the number of components
 - Component: place where text can vary
 - Highlight the components
- Order the FTs
 - FTs with the fewest components: first
 - FTs with the most components: last

The cases with 2 segments are treated in slides 9-18.

The cases with 1 segment are treated in slides 19-21.

Analyzing fact types

No matter how many components a FT has, it can have <u>only 2 segments</u>: groups of components that belong together (only 1 segment is also possible).

There are only two possibilities for the 2 segments:

- One segment concerns an ET, the other segment concerns an Att of this ET
- Both segments concern ETs, with a mutual RT

There is only one possibility for a FT with 1 segment:

The segment concerns an ET

Analzying fact types is:

determining which segments there are,
and which ETs, Atts and RTs are involved.

Analyzing fact types

The procedure to analyze FTs will be illustrated using the following four FTs:

```
FT1:
The family name of student S17 is Johansen.
                                " Robberts.
                            T66
FT2:
The course SQL is taught by Tmina.
                            Ttigo.
           FRM
FT3:
The exam of the course SQL on 14/1/2016 is held in room R67.
                            " 25/2/2016
                                                          45a.
                       ERM
FT4:
Student T66 scored a mark of 85 for the exam of SQL on 14/1/2016.
                                                      " 25/2/2016.
                                                 ERM
        S17
```

All modeling decisions are discussed with domain experts.

Two components. Segments underlined. Segments: ET + Att. Meaningful names.

Identifier of STUDENT: S17 and T66 are student numbers, which are called 'Studno' according to the domain expert.

ERD

The <pi> and <M> were checked with the domain experts. Domains for the Atts were specified also.

Analyzing fact types: FT1 (ET+Att)

```
FT1:
The family name of student S17 is Johansen.
                                " Robberts.
                           T66
                   ET STUDENT
                                  Att Family_name
```

For each ET: establish its <pi> (if Att: always <M>)

```
FT1
The family name of student S17 is Johansen.
                               " Robberts.
                          T66
                   ET STUDENT Att Family_name
                   TD: Att Studno
```

Predicate: The family name of student <Studno> is <Family_name>.

STUDENT			
<u>Studno</u>	<u><pi></pi></u>	<u>STUDNO</u>	<u><m></m></u>
Family_name		NAME	<m></m>

Rules for analyzing FTs

- Mark 2 segments (or 1), and decide on ET + Att or ET + ET (if 1 segment: ET).
- •
- If you find a new ET: determine its ID (primary identifier)
- •
- ullet
- Give the complete predicate
- Determine <M> for new Atts
- •
- •

Two components. Segments: ET + ET Meaningful names Identifier determined

RT: explicit notation with ET-names needed in general

ERD

All constraints, domains and cardinalities were determined with the domain experts

Analyzing fact types: FT2 (ET+ET)

```
FT2:
The course SQL is taught by Tmina.

" " ERM " " Ttigo.

ET COURSE ET TEACHER
```

ID: Att Course_code
ID: Att Teacher_code

Add a RT between the ETs; determine its cardinalities

```
The course SQL is taught by Tmina.

"" ERM " "Ttigo.

ET COURSE ET TEACHER

ID: Att Course_code ID: Att Teacher_code
```

RT Course_teacher between COURSE and TEACHER

Predicate: The course <Course_code>
is taught by <Teacher_code>.

Rules for analyzing FTs

- Mark 2 segments (or 1), and decide on ET + Att or ET + ET (if 1 segment: ET).
- •
- If you find a new ET: determine its ID (primary identifier)
- •
- In the ET + ET case: add a non-dependent RT
- Give the complete predicate
- Determine <M> for new Atts
- Determine cardinalities for new RTs

•

Analyzing fact types: FT3 (weak ET)

Could also be ET, if Atts for rooms were to be recorded, or a domain list would be convenient.

45a.

RT COURSE_of_EXAM between EXAM(dependent) and COURSE

Predicate: The exam of the course <Course_code> on <Date> is held in room <Room>.

Rules for analyzing FTs

- Mark 2 segments (or 1), and decide on ET + Att or ET + ET (if 1 segment: ET).
- If you find an old ET: MATCH
- If you find a new ET: determine its ID (primary identifier)
- If this ID contains an ET: add a dependent RT to it
- In the ET + ET case: add a non-dependent RT
- Give the complete predicate
- Determine <M> for new Atts
- Determine cardinalities for new RTs

•

Analyzing fact types: FT4 (Complex)

FT4:
Student T66 scored a mark of 85 for the exam of SQL on 14/1/2016.

"S17"""47
Att Mark

ET EXAM_PARTICIPATION
ID: ET STUDENT + ET EXAM
MATCH

MATCH

ID contains 2 old ETs: 2 MATCHes

Old ETs STUDENT and EXAM present. Mark: attribute (property) of

For each ET in the ID: add a dependent RT

Old ETs STUDENT and EXAM present. Mark: attribute (property) of an exam participation. So other three components must be one ET.

RT STUDENT_in_EXAM_PARTICIPATION between EXAM_PARTICIPATION(dependent) and STUDENT

RT EXAM_in_EXAM_PARTICIPATION between EXAM_PARTICIPATION(dependent) and EXAM

Predicate: Student <Studno> scored a mark of <Mark> for the exam of <Course_code> on <Date>.

Analyzing fact types: Complete ERD

Rules for analyzing FTs

- Mark 2 segments (or 1), and decide on ET + Att or ET + ET (if 1 segment: ET).
- If you find an old ET: MATCH
- If you find a new ET: determine its ID (primary identifier)
- If this ID contains an ET: add a dependent RT to it
- In the ET + ET case: add a non-dependent RT
- Give the complete predicate
- Determine <M> for new Atts
- Determine cardinalities for new RTs
- Add predicates and populations to the diagram to make the meaning of the fact types more clear

Examples of FTs with one segment

Example 1: Domain list

Such verbalizations might be given for domain lists (departments in an organization, wards in a hospital, towns in a country, ...).

Domain lists prevent typos, save users time and effort, and are easily updated by the DB admin.

```
There is a course ERM.
" " " SOL.
```

Only one component, only one segment possible. This must then be an ET.

There is a course ERM.
" " " SQL.
ET COURSE

ID: Att Course_code

Predicate: There is a course <Course_code>.

```
COURSE

Course code <pi> C CODE <M>
```


Suppose you know that enrollments have attributes of their own (date, status, ...). Then you don't want to treat this as an ET+ET case: it will result in a Many-to-Many RT.

Instead, an empty ET for the future Atts is desired.

Examples of FTs with one segment

Example 2: Empty weak ET

Student S17 has enrolled for the course ERM.

" T66 " " " " " SQL.

Two components, only 1 segment chosen: must be ET.

Student S17 has enrolled for the course ERM.

" T66 " " " " " SQL.

ET ENROLLMENT

ID: ET STUDENT + ET COURSE MATCH MATCH

RT R_STUDENT_in_ENROLLMENT between ENROLLMENT(dependent) and STUDENT

RT R_COURSE_in_ENROLLMENT between ENROLLMENT(dependent) and COURSE

Predicate: Student <Studno> has enrolled for the course <Course_code>.

Examples of FTs with one segment

Example 2: Empty weak ET

Note:

 Attributes for ENROLLMENT can be easily added: when analyzing a verbalization like:

The status of student S17's enrollment in the course ERM is: Pending.

the ET ENROLLMENT is old, so MATCH will do.

The rules given in slide 18 also capture the one-segment cases.

Practical recommendations

- Always work exclusively from concrete examples of facts.
- Always verbalize these facts carefully, with the possible exception of widely known simple attributes, but don't be too sloppy!
- Add predicates and/or example populations for
 - all unclear non-dependent RTs
 - all unclear <pi>+Att fact types

Fact-Oriented Modeling (FOM)

- Fact-based vs Attribute-based modeling
- Problems in classic ER models
 - Only type level
 - No semantics
 - No method
- Verbalizing example facts helps modelers
- Method to draw up an ER model
- Better FOM technique: FCO-IM and CaseTalk
- Experiences and conclusion

FOM technique: FCO-IM

FACT ORIENTED MODELING

Capturing Business Semantics in Data Models with Fully Communication Oriented Information Modeling

JAN PIETER ZWART MARCO ENGELBART STIJN HOPPENBROUWERS

Fact Oriented Modeling with FCO-IM

Published 2015

FOM technique: FCO-IM

Tool: CaseTalk

FOM technique: FCO-IM

- FCO-IM uses the same principles
 - Focus: complete elementary facts
 - Model is built by analyzing verbalizations of example facts
- Method more fully worked out
 - Verbalizations incorporated
 - Many constraint types included (uniqueness, totality, cardinality, subset, ...)

FCO-IM model (in CaseTalk)

FCO-IM model (in CaseTalk)

FOM technique: FCO-IM Tool: CaseTalk

- Automatic transformation of FCO-IM model into
 - ERM data model
 - UML class diagrams
 - Relational database schema
 - DWH Star Schema
 - Data Vault
 - •
- Script generation
 - Several RDBMS platforms

ERM model (derived in CaseTalk)

ERM model (derived in CaseTalk)

Relational schema (derived in CaseTalk)

Fact-Oriented Modeling (FOM)

- Fact-based vs Attribute-based modeling
- Problems in classic ER models
 - Only type level
 - No semantics
 - No method
- Verbalizing example facts helps modelers
- Method to draw up an ER model
- Better FOM technique: FCO-IM and CaseTalk
- Experiences and conclusion

Experience with this approach in class

- Procedure: can be taught and practised well in class
- Case studies (hospital, music theater, travel agency):
 - Students were only allowed to continue
 if the verbalizations were approved by the domain expert (teacher)
 - Verbalizing takes time
 - Students understand UoD better:
 - Less jumping to (wrong) conclusions,
 and misunderstandings corrected quickly
 - Excellent way to solve semantic issues
 - Analyzing and drawing up the ERM diagram was easy after this
- Students: appreciate the 'best of both worlds' approach
 - For trivial attributes: why the fuss?
 - More difficult modeling: benefit is acknowledged

Conclusions

- Fact-Based viewpoint: valuable additional perspective
 - Exactly one complete fact (natural unit of information)
 - vs Entity Type (cluster of facts) or Attribute (fact fragment)
- Verbalizations of elementary facts can be used to
 - Supplement a classic ER model where convenient with instance-level examples to add clarification by illustration
 - Supplement a classic ER model where convenient with elementary fact predicates to add semantics
 - Draw up an ER model using a systematic easy-to-learn procedure telling you <u>how</u> to do so

Catching three birds with one net

